- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Stillman, Michael (3)
-
Brake, Danielle A. (1)
-
Braun, Andreas P. (1)
-
Halpern-Leistner, Daniel (1)
-
Hauenstein, Jonathan D. (1)
-
Long, Cody (1)
-
McAllister, Liam (1)
-
Peifer, Dylan (1)
-
Schreyer, Frank-Olaf (1)
-
Sommese, Andrew J. (1)
-
Stillman, Michael E. (1)
-
Strogatz, Steven H. (1)
-
Sung, Benjamin (1)
-
Townsend, Alex (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
III, Hal Daumé (1)
-
Singh, Aarti (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Peifer, Dylan; Stillman, Michael; Halpern-Leistner, Daniel (, Proceedings of the 37th International Conference on Machine Learning)III, Hal Daumé; Singh, Aarti (Ed.)Studying the set of exact solutions of a system of polynomial equations largely depends on a single iterative algorithm, known as Buchberger’s algorithm. Optimized versions of this algorithm are crucial for many computer algebra systems (e.g., Mathematica, Maple, Sage). We introduce a new approach to Buchberger’s algorithm that uses reinforcement learning agents to perform S-pair selection, a key step in the algorithm. We then study how the difficulty of the problem depends on the choices of domain and distribution of polynomials, about which little is known. Finally, we train a policy model using proximal policy optimization (PPO) to learn S-pair selection strategies for random systems of binomial equations. In certain domains, the trained model outperforms state-of-the-art selection heuristics in total number of polynomial additions performed, which provides a proof-of-concept that recent developments in machine learning have the potential to improve performance of algorithms in symbolic computation.more » « less
-
Brake, Danielle A.; Hauenstein, Jonathan D.; Schreyer, Frank-Olaf; Sommese, Andrew J.; Stillman, Michael E. (, SIAM Journal on Applied Algebra and Geometry)
-
Townsend, Alex; Stillman, Michael; Strogatz, Steven H. (, Chaos: An Interdisciplinary Journal of Nonlinear Science)
An official website of the United States government

Full Text Available